Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior

نویسندگان

  • Jianfei Yang
  • Dirk H. J. Poot
  • Matthan W. A. Caan
  • Tanja Su
  • Charles B. L. M. Majoie
  • Lucas J. van Vliet
  • Frans M. Vos
چکیده

PURPOSE This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. METHODS Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is based on the Fisher information matrix and enables the assessment whether two tensors are mandatory to describe the data. The method is compared to Maximum Likelihood Estimation (MLE) of the dual tensor model and to FSL's ball-and-stick approach. RESULTS Monte Carlo experiments demonstrated that JARD's volume fractions correlated well with the ground truth for single and crossing fiber configurations. In single fiber configurations JARD automatically reduced the volume fraction of one compartment to (almost) zero. The variance in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related white matter atrophy using JARD compared to both MLE and the ball-and-stick approach. CONCLUSIONS The proposed framework offers accurate and precise estimation of diffusion properties in single and dual fiber regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Resolution of crossing fibers with constrained compressed sensing using traditional diffusion tensor MRI

Diffusion tensor imaging (DTI) is widely used to characterize tissue micro-architecture and brain connectivity. Yet, DTI suffers serious limitations in regions of crossing fibers because traditional tensor techniques cannot represent multiple, independent intra-voxel orientations. Compressed sensing has been proposed to resolve crossing fibers using a tensor mixture model (e.g., Crossing Fiber ...

متن کامل

Dual tensor for tract-based analysis: towards application to routine clinical diffusion images

Introduction FA values obtained from single tensor model fail to represent white matter integrity at the locations where white matter tracts cross. These values are usually underestimated with single tensor model used in conventional DTI. Currently a significant amount of diffusion imaging protocols used for fitting single tensor include acquisitions of diffusion weighted images (DWIs) of more ...

متن کامل

Three-stage inversion improvement for forest height estimation using dual-PolInSAR data

This paper addresses an algorithm for forest height estimation using single frequency single baseline dual polarization radar interferometry data. The proposed method is based on a physical two layer volume over ground model and is represented using polarimetric synthetic aperture radar interferometry (PolInSAR) technique. The presented algorithm provides the opportunity to take advantages of t...

متن کامل

Joint Fractional Segmentation and Multi-tensor Estimation in Diffusion MRI

In this paper we present a novel Bayesian approach for fractional segmentation of white matter tracts and simultaneous estimation of a multi-tensor diffusion model. Our model consists of several white matter tracts, each with a corresponding weight and tensor compartment in each voxel. By incorporating a prior that assumes the tensor fields inside each tract are spatially correlated, we are abl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016